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A new model for prediction of rock fragmentation by blasting is presented based upon the basic

concepts of rock engineering systems (RES). The newly proposed approach involves 16 effective

parameters on fragmentation by blasting with keeping simplicity as well. The data for 30 blasts, carried

out at Sungun copper mine, western Iran, were used to predict fragmentation by the RES based model

as well as Kuz–Ram and multiple regression modeling. To validate the new model, the fragmentations

of nine production blasts were measured and the results obtained were compared with the predictions

carried out by the RES, Kuz–Ram and multiple regression models. Coefficient of determination (R2) and

root mean square error (RMSE) were calculated for the models to compare the results obtained. For the

RES, linear, polynomial, power, logarithmic, exponential and Kuz–Ram models, R2 and RSME are equal

to (0.65 and 14.51), (0.58 and 29.73), (0.54 and 21.58), (0.60 and 32.64), (0.61 and 23.80), (0.50 and

184.60) and (0.46 and 22.22) respectively. These indicate that the RES based model predictor with

higher R2 and less RMSE performs better than the other models.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Rock fragmentation has been the concern of many research
works because it is considered as the most important aspect of
production blasting, since it affects on the costs of drilling,
blasting and the efficiency of all the subsystems such as loading,
hauling and crushing in mining operations [1–7]. The parameters
affecting on the rock fragmentation can be categorized in two
groups: the first group is controllable parameters; such as blast-
ing design parameters and also explosive related parameters; and
the second one are uncontrollable parameters, which contains
physical and geomechanical properties of intact rock and also
rock mass [8–10].

Prediction of the rock fragmentation size is the first step toward
optimization of blast design parameters to produce required frag-
ment size [11]. Several studies have been conducted on the predic-
tion of fragmentation by blasting accounting for controllable and
uncontrollable parameters. An equation on the basis of the relation-
ship between mean fragment size and specific charge was developed
by Kuznetsov [12]. Cunningham [13], based upon the Kuznetsov
model and the Rosin & Rammler distribution, introduced a new
model, Kuz–Ram model, to predict rock fragmentation by blasting.
Kuz–Ram model was further improved by Cunningham [14].
ll rights reserved.
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Hjelmberg [15] presented the SveDeFo model to predict X50,
considering the rock mass type and the blast pattern. Otterness
et al. [16] performed an extensive study to correlate shot design
parameters to fragmentation. Kou and Rustan [17] developed an
empirical model to predict X50. Lownds [18] used distribution of
explosives energy to predict the fragmentation by blasting. Aler
et al. [4] carried out a research work to predict blast fragmenta-
tion by multivariate analysis procedures. Djordjevic [19] pre-
sented the results of blast fragmentation modeling based on two
mechanism of failure at JKMRC. Furthermore, Morin and Ficarazzo
[20] applied Monte Carlo simulation as a tool for prediction of
fragmentation based on Kuz–Ram model. Also, Gheibie et al.
[21,22] tried to enhance fragmentation prediction by modification
of Kuznetsov model and Kuz–Ram model. In 2010, Ouchterlony
proposed a new fragment size distribution function [23].

Some research works were carried out using artificial intelligence
methods to predict rock fragmentation. Saavedra et al. [24] conducted
a research work to predict fragmentation by blasting, using a neural
network model. Monjezi et al. [25] developed a fuzzy logic model for
prediction of rock fragmentation by blasting. Kulatilake et al. [10]
presented a piece of work, predicting mean particle size in rock blast
fragmentation using neural networks. Also, Monjezi et al. [26] used
neural networks for prediction of rock blasting fragmentation. Chak-
raborty et al. and Hudaverdi et al. [27,28] applied multivariate
analysis procedures to predict rock fragmentation by blasting.

The empirical and neural network models that are based upon
the data surveying from different blasting operations, in a certain
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range of rock types, cannot be generalized for various ground
conditions. Furthermore, all of above models do not simulta-
neously consider all the pertinent parameters in the modeling.
Under such limitations or constraints, the prediction of rock
fragmentation due to blasting needs the new innovative methods
such as the RES based model, capable of accounting unlimited
parameters in the model. The RES approach has been applied to a
number of rock engineering fields, for examples, evaluation of
stability of underground excavations [29], hazard and risk assess-
ment of rockfall [30], rock mass characterization for indicating
natural slope instability [31], development of an assessment
system for blastability of rock masses [32], assessing geotechnical
hazards for TBM tunneling [33] and quantitative hazard assess-
ment for tunnel collapses [34].

 
 

 

Fig. 1. A general view of the Sungun copper mine.

Fig. 2. Different sectors in the
The present paper introduces a new RES based model that can
be applied to evaluate fragmentation risk (poor fragmentation)
and then, predict rock fragmentation in bench blasting, consider-
ing all pertinent parameters. To validate the performance of the
model proposed, it is applied to Sungun copper mine, Iran.
Furthermore, the results obtained are compared with the results
of Kuz–Ram model and also statistical modeling, which carry out
for the same mine.
2. The field study

2.1. Site description

Sungun copper mine, an open-pit mine, with a mineable
reserve of 410 Mt and average grade of 0.6% copper, is located
100 km north east of Tabriz city, Iran. It is planned to produce
7 Mt ore for the initial 7 years with the intention to expand
capacity up to 14 Mt of ore. A maximum slope height of 765 m
was obtained for the initial design of the final pit. In blasting
operation, ANFO is used as explosive and NONEL and detonating
cord as initiation systems with staggered pattern. Also, inter-row
Sungun copper mine [35].

Table 1
Properties of intact rock and rock mass in the Sungun copper mine [35].

Sector Average values of intact rock and rock mass

UCS (MPa) C (KPa) GSI RMR

RS01 55 538 35 37

RS02 63 630 38 49

RS03 73 662 39 44

RS04 68 710 39 34

RS05 64 655 37 43

RS06 87 794 39 41

RS07 82 789 40 44
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sequencing was adopted. A general view of Sungun copper mine
is shown in Fig. 1.

The geology of area consists of Sungun intrusive complex
hosting the Sungun porphyry copper stock intruded along the
Sungun anticline into cretaceous limestone, marls and shales. The
main lithological units exposed in the Sungun pit are Sungun
porphyry (SP), Dykes, Pyroclastics (PC), Trachybasalt (TB) and
Skarn (SK) [35].

2.2. Rock mass properties

Based upon the rock mass characteristics in the Sungun copper
mine, seven sectors were recognized (RS01–RS07), as shown in
Fig. 2 and Table 1 [35].

2.3. Data collection

Based upon 39 blasts carried out at Sungun copper mine, a
database was prepared for models development. Out of 39 blasts,
30 blasts were used for modeling development and nine blasts for
evaluation of models performance. In this database, burden (B),
maximum instantaneous charge, powder factor, S/B (S: spacing),
ST/B (ST: Stemming), stiffness factor, time delay, number of rows,
blasthole inclination, blasthole deviation, blasthole diameter (D),
B/D, J/B (J: subdrilling), blasting pattern, initiation sequence and
blastability index were measured or calculated as input para-
meters to the model and X80 (80% passing size) as representative
of muck pile fragmentation size was measured as a favorable
parameter in each blasting round.

The image analysis technique was used to find muck pile
distribution and the relevant X80 for each blast. In average, for
each blast 30 photos were taken systematically from muck pile in
different steps of loading (immediately after blast, after loading
half of muck pile and at the end of muck pile loading). Goldsize
software was used to carry out image analysis in which delineat-
ing of fragments is done manually and the fine correction option
was used. The software was calibrated by comparing image
analysis with sieve results (for determining sieve shift and mass
power). A sample work of the image analysis for a blast (blast no. 9)
at Sungun copper mine and the corresponding muck pile distribu-
tion curve are shown in Figs. 3 and 4 respectively.

The basic descriptive statistics of 39 blasts carried out at
Sungun copper mine are summarized in Table 2.
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Fig. 4. Muck pile distribution curve for blast No. 9, Sungun copper mine.
3. Muck pile fragment size prediction, using Kuz–Ram model

The Kuz–Ram model, proposed by Cunningham [14], is the
most used empirical fragmentation method, based upon the
Kuznetsov and Rosin–Rammler equations. The Rosin–Rammler
equation is used to characterize muck pile size distribution. It is
Fig. 3. Image analysis for blast
expressed as an exponential relation [13]:

R¼ e� x=xcð Þ
n

ð1Þ

where R is the weight fraction of fragments larger than x, n is the
uniformity exponent, xc is the characteristic size and x is the
fragment size.

The Kuznetsov [12] equation is a semi-empirical equation
based upon field studies and that relates the mean fragment size
to the quantity of explosive, the rock volume blasted and the rock
strength:

Xm ¼ A
VO

QT

� �0:8

Q0:167
T ð2Þ

where Xm is the mean fragment size (cm), A is the rock factor, VO

is the rock volume fragmented per blasthole (m3), QT is the mass
of TNT containing the energy equivalent of the explosive charge in
each blasthole (kg). The original equation was modified by
Cunningham for ANFO based explosives [14]:

Xm ¼ AK�0:8Q0:167
e

SANFO

115

� ��0:633

ð3Þ

where K is the powder factor (kg/m3), SANFO is the weight strength
of the explosive relative to ANFO, and Qe is the mass explosive
being used in each hole (kg). The blastability index, originally
proposed by Lilly [36], was adopted to determine rock factor:

A¼ 0:06� RMDþ JFþRDIþHFð Þ ð4Þ

where A is the rock factor, RMD the rock mass description, JF the
joint factor, RDI the rock density index and HF the hardness factor.
These factors are calculated from geological data such as; in situ
block size, joint spacing, joint orientation, rock specific gravity,
no. 9, Sungun copper mine.



Table 2
Basic descriptive statistics of 39 blasts, Sungun copper mine.

No. Parameter Symbol Min Max Mean St.d

1 Burden (m) B 1.3 5.5 3.94 1.03

2 Maximum instantaneous charge (kg) MC 81 4230 1404.29 964.78

3 Powder factor (g/ton) PF 72 373 205.01 171.23

4 S/B ratio S/B 1 3.9 1.57 1.11

5 ST/B ratio ST/B 0.33 3.44 1.02 0.65

6 Stiffness factor H/B 1.1 10 3.35 1.91

7 Number of rows N 1 5 2.64 0.96

8 Time delay (ms) DLY 20 200 58.10 45.00

9 Hole inclination (degree) INCL 90 90 90.00 0.00

10 Hole deviation (degree) DEV 5 15 11.41 2.67

11 Hole diameter D 125 250 148.39 26.47

12 J/B ratio J/B 0 0.45 0.09 0.14

13 Blastability Index BI 30 63.5 37.61 6.73

14 B/D ratio B/D 5 38 26.86 6.70

15 80% passing size X80 10 108 50.54 21.98

S: Spacing, ST: Stemming, St. d.: Standard deviation, H: Bench height, Min.: Minimum, Max.: Maximum, Blasting agent is ANFO (0.84 g/cm3)

Table 3
Relations between individual independent variables and X80 for 30 blasts, Sungun

copper mine.

Independent variables Regression line R2 N

B X80¼16.56(B)�10.27 0.35 30

MC X80¼0.002(MC)þ48.60 0.005 30

PF X80¼�0.142(PF)þ74.62 0.21 30

S/B X80¼�11.61(S/B)þ68.48 0.12 30

ST/B X80¼�8.57(ST/B)þ60.48 0.10 30

H/B X80¼�3.60(H/B)þ64.17 0.15 30

N X80¼10.23(N)þ25.54 0.27 30

DLY X80¼�0.028(DLY)þ52.58 0.002 30

DEV X80¼3.44(DEV)þ8.29 0.08 30

D X80¼0.076(D)þ40.39 0.01 30

J/B X80¼�18.02(J/B)þ51.91 0.01 30

BI X80¼0.154(BI)þ45.44 0.001 30

B/D X80¼0.916(B/D)þ27.07 0.16 30

Dependant variable: X80 30
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Young’s modulus and unconfined compressive strength. Cunning-
ham combined the Kuznetsov equation and the Rossin–Rammler
distribution to produce the Kuz–Ram model [14]. Since the
Kuznetsov formula gives the screen size Xm for 50% of the passing
materials, the characteristic size is calculated from the average
size by substituting X¼Xm and R¼0.5 into Eq. (1):

Xc ¼
Xm

ð0:693Þ1=n
ð5Þ

The uniformity coefficient is calculated from an equation
developed by Cunningham [13]. Cunningham established the
applicable uniformity coefficient through several investigations,
considering the effect of blast geometry, hole diameter, burden,
spacing, hole lengths and drilling accuracy. The n factor can be
estimated using Eq. (6) given below:

n¼ 2:2�14 B=D
� �� � 1þ S=B

� �
2

� 	0:5

1�
W

B

� �
L

H

� �
ð6Þ

where B is the blasting burden (m), S is the blasthole spacing (m),
D is the blasthole diameter (mm), W is the standard deviation of
drilling accuracy (m), L is the total charge length (m), and H is the
bench height (m). Cunningham notes that the uniformity coeffi-
cient n usually varies between 0.8 and 1.5.
4. Statistical modeling

In reviewing the literatures published, addressing the para-
meters affecting on the muck pile fragment size [37–41], it is
clear that many parameters can influence on the muck pile
fragment size. However, the most important parameters, which
are easily obtainable, are shown in Table 2. Since, initiation
sequence and blast holes pattern are descriptive effective para-
meters on muck pile fragment size, they were not considered in
the statistical modeling.

At the first stage of analysis, hole inclination (INCL) was
removed from analysis as it is constant for all blasts with standard
deviation of zero (Table 2). The significance of other parameters in
the modeling was investigated based upon correlations between
the individual independent variables and the actual measured X80.

Coefficient of determination (R2) was used as an indicator of
correlation strength. R2 values for independent variables versus
X80 are presented in Table 3. It can be concluded that MC, DLY,
DEV, D, J/B and BI have negligible effects on X80 and should be
excluded in the regression modeling. Therefore, for further
statistical analysis and development of a prediction model, six
independent variables were selected.

4.1. Multiple linear regression analysis

A multiple linear regression analysis was carried out between
B, PF, S/B, ST/B, H/B and N as independent variables and X80 as
dependent variable, using the commercial software packages for
standard statistical analysis (SPSS). Based on the statistical
analysis, the predictive model is as follows:

X80ðcmÞ ¼ �32:668þ22:160ðBÞ�0:125ðPFÞþ21:264 S=B
� �

þ7:979 ST=B
� �

�3:828 H=B
� �

þ9:747ðNÞ�1:801 B=D
� �

ð7Þ

A multicollinearity analysis was carried out to check whether
two or more independent variables are highly correlated. In the
case of occurring multicollinearity, redundancy of the indepen-
dent variables could be expected, which can lead to erroneous
results. One of the most common tools for finding the degree of
multicollinearity is the variance inflation factor (VIF). It has a
range of 1 to infinity. Generally, if the calculated VIF is greater
than 10, there may be a problem with multicollinearity [42]. The
VIF values of the independent variables in Eq. (7) were calculated,
as shown in Table 4. It was concluded that Eq. (7) with VIF of ST/B

(21.64) and H/B (27.56) suffers from a high degree of multi-
collinearity. Also, the relationship between ST/B and H/B was



Þ

Table 4
Multiple linear regression coefficients and collinearity statistics for Eq. (7).

Independent
variables

Unstandardized coefficients Standardized
coefficients

95% Confidence Interval for B t values Collinearity Statistics

B Std. Error Beta Lower Bound Upper Bound Tolerance VIF

Constant �32.668 49.272 �134.851 69.516 �0.663

B 22.160 7.258 0.787 7.108 37.212 3.053 0.277 3.604

PF �0.125 0.068 �0.398 �0.267 0.016 �1.834 0.392 2.552

S/B 21.264 11.412 0.637 �2.402 44.930 1.863 0.158 6.326

ST/B 7.979 17.682 0.289 �28.691 44.650 0.451 0.045 22.289

H/B �3.828 6.913 �0.417 �18.165 10.509 �0.554 0.033 30.754

N 9.747 3.773 0.490 1.922 17.572 2.583 0.513 1.949

B/D �1.081 0.923 �0.400 �2.995 0.834 �1.171 0.158 6.342

R2 = 0.96
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Fig. 5. Correlation between ST/B and H/B.

Table 5
Regression statistics obtained for Eq. (8).

Model summary

R R2 Adjusted

R2

Std. error of the

estimate

Observations

0.768 0.590 0.483 14.423 30

Analysis of variance (ANOVA)

Sum of

squares

df Mean square F Sig.

Regression 6894.923 6 1149.154 5.524 0.001

Residual 4784.543 23 208.024

Total 11,679.467 29
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examined, which led to finding a high correlation between these
two independent variables with determination coefficient (R2) of
0.96 (Fig. 5).

To reduce the effect of multicollinearity, a new regression
model was defined by removing an independent variable from the
model that is correlated with another independent variable.
Between variables ST/B and H/B, ST/B with less determination
coefficient (Table 3) was excluded from the model and the new
modified model is as follows:

X80 ¼�30:278þ22:229ðBÞ�0:127ðPFÞþ20:109 S=B
� �

�1:130 H=B
� �

þ10:038ðNÞ�1:180 B=D
� �

ð8Þ
The regression statistics, model summary and analysis of
variance (ANOVA) for Eq. (8) are shown in Table 5. The model
statistic value F and significance (Sig.) are used to provide enough
evidence to reject the hypothesis of ‘‘no effect’’. From Table 5, F of
5.52 and Sig. of 0.001 (less than 0.05) were obtained, which show
that the null hypothesis can be rejected. It means that at least one
of the input parameters significantly affects on the X80. Further-
more, possible multicollinearity of the new model (Eq. (8)) was
investigated (Table 6). As it is shown in Table 6, in the modified
model, VIF for each independent variable is less than 10. It means
that no severe correlation between input independent variables
exists.

4.2. Multiple non-linear regression analysis

Polynomial, power, exponential and logarithmic models with
the same independent variables and X80 as dependent variable
and also the same sets of data were used to carry out non-linear
regression modeling. The mathematical equation obtained for
polynomial model with R2

¼0.58 is

X80ðcmÞ ¼ 11:062þ10:497ðBÞ�0:00037 B=D
� �2

�0:00000065ðPFÞ3

�0:0505 S=B
� �4

þ0:00033 H=B
� �5

þ0:0023ðNÞ6 ð9Þ

For power model the relation with R2
¼0.58 is

X80ðcmÞ ¼ 101:332þ0:152ðbÞ�0:011 B=Dð Þ�0:001ðPFÞþ0:121 S=Bð Þ�0:019 H=Bð Þþ0:066ðN

ð10Þ

Furthermore, for logarithmic regression modeling, R2
¼0.61 is

obtained and the relation is

X80ðcmÞ ¼ 146038þ53:852lnðBÞ�28:817ln B=D
� �

�14:054ðPFÞ

þ26:486 S=B
� �

�20:350ln H=B
� �

þ16:051lnðNÞ ð11Þ

Finally, the exponential relation for regression modeling with
R2
¼0.49 is

X80ðcmÞ ¼ exp 3:020þ0:765ðBð Þ�0:105 B=D
� �

�0:006 ðPFÞ

�0:098 S=B
� �

þ0:205 H=B
� �

þ0:697ðNÞÞ ð12Þ
5. Rock engineering systems

The concept of rock engineering systems (RES), introduced by
Hudson [43], is a method of structuring all the ways in which rock
mechanics parameters and variables can affect one another-the
rock mechanics interactions. The key element in the RES is the
interaction matrix. The interaction matrix is both the basic
analytical and a presentational technique for characterizing the
important parameters and the interaction mechanisms in a rock
engineering system. The generation of the interaction matrix can



Table 7
ESQ interaction matrix coding [43].

Coding Description

0 No interaction

1 Weak interaction

2 Medium interaction

3 Strong interaction

4 Critical interaction

Table 8
Classification of the vulnerability index (modified after Ref. [33]).

Risk description Low–medium Medium–high High–very high

Category I II III

Vulnerability index 0–33 33–66 66–100
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help in evaluating the weighting of the parameters within the
rock mass system as a whole.

In the interaction matrix, the principal parameters affecting
the system (for example, a fragmentation system) are located
along the leading diagonal of the matrix and the effects of each
individual parameter on any other parameter (interactions) are
placed on the off-diagonal cells. The assigning values to off-
diagonal cells are called coding the matrix. A problem having
only two parameters is the simplest of interaction matrix, as
revealed in Fig. 6(a). Also, a general view of the coding of
interaction matrix is shown in Fig. 6(b) [43]. The row passing
through Pi represents the influence of Pi on all the other para-
meters in the system, while the column through Pi shows the
effects of other parameters, or the remaining of the system, on Pi.
In principal, there is no limit to the number of parameters that
may be included in an interaction matrix.

Different procedures such as, the 0–1 binary, expert semi-
quantitative (ESQ) [43] and the continuous quantitative coding
(CQC) [44] were proposed for numerically coding the interaction
matrix. Among the coding procedures, the ESQ coding is the most
common used. According to this coding technique, the interaction
intensity is denoted by the values from 0 (no interaction) to 4
(critical interaction) as shown in Table 7.

In the interaction matrix, the sum of a row is called the ‘‘cause’’
value (CPi ¼

Pn
j ¼ 1 Iij) and the sum of a column is the ‘‘effect’’

value (EPj ¼
Pn

i ¼ 1 Iij), denoted as coordinates (C, E) for a particular
parameter. The coordinate values for each parameter can be

 
 

 

Fig. 6. Interaction matrix in RES, (a) two parameters interaction matrix; (b) a

Table 6
Multiple linear regression coefficients and collinearity statistics for Eq. (8).

Independent variables Unstandardized coefficients Standardized
coefficients

B Std. error Beta

Constant �30.278 48.131

B 22.229 7.130 0.790

PF �0.127 0.067 �0.404

S/B 20.109 10.927 0.602

H/B �1.130 3.410 �0.123

N 10.038 3.652 0.505

B/D �1.180 0.881 �0.437
plotted in cause and effect space, forming the so-called C–E plot.
The interactive intensity value of each parameter is denoted as
the sum of the C and E values (CþE) and it can be used as an
indicator of parameter’s significance in the system. The
general view of the coding of interaction matrix (modified after Ref. [43]).

95% Confidence interval for B t values Colinearity statistics

Lower bound Upper bound Tolerance VIF

�129.845 69.288 �0.629

7.480 36.977 3.118 0.278 3.603

�0.265 0.011 �1.897 0.393 2.543

�2.494 42.713 1.840 0.166 6.007

�8.184 5.924 �0.331 0.129 7.751

2.483 17.594 2.748 0.529 1.892

�3.002 0.643 �1.339 0.167 5.984
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percentage value of (CþE) can be used as the parameter’s
weighting factor (ai) as follows:

ai ¼
ciþEið ÞP

iciþ
P

iEi

� �� 100 ð13Þ

 
 

 

Table 11
Weighting of the principal parameters in rock fragmentation.

No. Parameters C E CþE C–E ai (%)

1 Burden 19 22 41 �3 11.7

2 Maximum instantaneous charge 1 22 23 �21 6.6

3 Powder factor 6 22 28 �16 8.0

4 S/B ratio 4 15 19 �11 5.4
6. An RES based model to predict rock fragmentation

The principles of RES were used in the vulnerability index (VI)
methodology concept, first introduced by Benardos and Kaliam-
pakos (2004) to identify the vulnerable areas that may pose threat
to the tunnel boring machine (TBM) tunneling operation [33]. As
there is an obvious relation between advance rate and the
associated risk encountered, this concept was also used to predict
advance rate in the TBM tunneling. In this research, a similar
methodology, inspired by the work carried out by Benardos and
Kaliampakos [33] is adopted to define a model, predicting muck
pile fragment size, considering poor fragmentation as risk
encountered during blasting.

In defining the new model, three main steps must be taken
into account. The first step is to identify the parameters that are
responsible for the occurrence of risk in case of fragmentation
(poor fragmentation), analyze their behavior and evaluate the
significance (weight) that each one has in the overall risk condi-
tions (poor fragmentation). In this step, the RES principles can be
used to assess the weighting of the parameters involved (within
the rock mass system as a whole).
Table 9
Effective parameters used to define the RES based model.

Effective parameters in fragmentation

P1 Burden P9 Blasthole inclination

P2 Maximum instantaneous charge P10 Blasthole deviation

P3 Powder factor P11 Hole diameter

P4 S/B ratio P12 J/B ratio

P5 ST/B ratio P13 Blast holes pattern

P6 Stiffness ratio (H/B) P14 Initiation sequence

P7 Number of rows P15 Blastability Index (BI)

P8 Time delay P16 B/D ratio

Table 10
The interaction matrix for the parameters affecting on the muck pile

fragment size.

P1 2 2 2 2 2 2 3 2 0 0 2 0 0 0 0

0 P2 0 0 0 0 0 1 0 0 0 0 0 0 0 0

2 0 P3 2 0 0 0 0 0 0 0 0 0 0 0 2

0 2 2 P4 0 0 0 0 0 0 0 0 0 0 0 0

0 2 1 0 P5 0 0 0 0 0 0 0 0 0 0 0

2 2 2 3 2 P6 1 1 1 2 2 2 0 0 0 1

1 1 1 0 1 0 P7 3 0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 P8 0 0 0 0 0 0 0 0

2 3 2 0 1 0 0 1 P9 2 0 2 0 0 0 0

2 1 1 2 1 0 0 0 0 P10 0 1 0 0 0 1

3 3 2 1 1 2 1 2 0 3 P11 0 0 1 0 2

0 1 1 0 0 0 0 0 0 0 0 P12 0 0 0 0

2 0 2 2 0 0 1 0 0 0 0 0 P13 2 0 1

2 2 0 1 0 0 2 2 0 0 0 0 0 P14 0 1

3 2 4 2 1 2 2 3 2 3 1 2 2 1 P15 3

3 1 2 0 0 2 1 3 0 0 0 1 1 1 0 P16
In the second step, the vulnerability index can be determined,
[33]:

VI¼ 100�
X
i ¼ 1

Qi

Qmax
ð14Þ

where ai is the weighting of the ith parameter, Qi is the value
(rating) of the ith parameter, and Qmax is the maximum value
assigned for ith parameter (normalization factor)

Based upon the vulnerability index estimated [Eq. (14)] and
the classification of the vulnerability index, which is divided into
three main categories with different severity of the normalized
scale of 0–100 (Table 8) [33], the level of risk corresponding to
fragmentation of a blast can be identified. In category I, small-
scale problems are expected, that cannot significantly affect the
results of fragmentation of the blast. In category II, the proble-
matic occurrence of poor fragmentation might encountered,
which must be taken into account. In category III, certain
individual regions with poor fragmentation, which might cause
several difficulties during the loading, hauling and crushing must
be considered.

In the third step, a relation between muck pile fragment size
and vulnerability index can be determined. The higher value of VI
refers to poor fragmentation and vice versa. Based upon this new
5 ST/B ratio 3 9 12 �6 3.4

6 Stiffness ratio (H/B) 21 8 29 13 8.3

7 Number of rows 7 11 18 �4 5.1

8 Time delay 2 19 21 �17 6.1

9 Blasthole inclination 12 5 17 7 4.9

10 Blasthole deviation 9 10 19 �1 5.4

11 Hole diameter 21 3 24 18 6.9

12 J/B ratio 2 10 12 �8 3.4

13 Blast holes pattern 10 3 13 7 3.7

14 Initiation sequence 10 5 15 5 4.3

15 Blastability index (BI) 33 0 33 33 9.4

16 B/D ratio 15 11 26 4 7.4

SUM 175 175 350 0 100
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Fig. 7. E–C plot for principal parameters of rock fragmentation.
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Fig. 8. The CþE values for principal parameters of rock fragmentation.

Table 12
Proposed ranges for the parameters effective in fragmentation.

Parameters Values/description and ratings

1 Burden (m) Value o3

Rating 4

2 Maximum instantaneous charge (kg) Value o500

Rating 5

3 J/B ratio Value o0.1

Rating 0

4 S/B ratio Value o1

Rating 0

5 ST/B ratio Value o0.7

Rating 0

6 Number of rows Value o3

Rating 4

7 Stiffness ratio (H/B) Value 41

Rating 0

8 Blast holes pattern Description Staggered

Rating 3

9 Initiation sequence Description V34

Rating 4

10 Hole deviation (deg.) Value 0

Rating 4

11 Blastability Index (BI) Value 0–20

Rating 4

12 Hole inclination(deg.) Value 90

Rating 0

13 Powder factor (g/ton) Value o125

Rating 0

14 Time delay (ms/m) Value o2

Rating 0

15 Hole diameter (mm) Value o100

Rating 4

16 B/D ratio Value o20

Rating 2

n V45 denotes the chevron initiation sequence with angle of 45

Table 13
Parameters’ values and the corresponding VI for blast shot No. 1, Sungun copper mine

Parameter B (m) MC (kg) PF (g/ton) S/B ST/B H/B N DLY (ms

Value or description 4 3245 97 1.1 0.9 3 2 50

Value rating (Qi) 3 1 0 3 4 3 4 2

Weighting (% ai) 11.7 6.6 8.0 5.4 3.4 8.3 5.1 6.1

VI 46

B: Burden, MC: Maximum instantaneous charge, PF: Powder factor, S: Spacing, ST: Stem

Hole deviation, D: Hole diameter, J: Sub-drilling, PAT: blast holes pattern, SEQ: Initiati
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relation, the muck pile fragment size for every blast can be
obtained having VI for the corresponding blast.

6.1. Effective parameters in the RES based model

Parameters in Table 2 as well as two descriptive parameters,
initiation sequence and blast holes pattern, were used to define
the RES based model (Table 9).

6.2. Interaction matrix and rating of parameters

6.2.1. Interaction matrix

The 16 principal parameters affecting on the muck pile fragment
size are located along the leading diagonal of the matrix and the
effects of each individual parameter on any other parameter (inter-
actions) are placed on the off-diagonal cells. The assigning values to
off-diagonal cells, coding the matrix, were carried out, using the ESQ
coding method as proposed by Hudson [43]. Based upon the views
of three experts, working in the field of rock blasting for many years,
3–5 5–7 7–9 49

3 2 1 0

500–1000 1000–2000 2000–3000 3000–4500 44500

4 3 2 1 0

0.1–0.3 0.3–0.5 40.5

1 3 2

1–2 2–3 3–4 44

3 2 1 0

0.7–0.9 0.9–1.2 1.2–1.4 41.4

2 4 3 1

3–5 5–6 6–7 47

3 2 1 0

1–2 2–3 3–4 44

1 2 3 4

Square Rectangular Single row

2 1 0

V64 Vo34 V45
n Inter-row

3 2 1 0

0–5 5–10 10–15 415

3 2 1 0

21–40 41–60 61–80 81–100

3 2 1 0

90–80 80–70 70–65 465

1 2 3 2

125–150 150–175 175–210 210–300 o300

1 2 3 4 4

2–5 5–7 7–10 10–20 o20

1 3 4 2 1

100–150 150–200 200–250 250–300 o300

3 2 1 0 0

20–40 o40

1 0

.

) INCL (deg.) DEV (deg.) D (mm) J/B PAT SEQ BI B/D

90 12 125 0 staggered inter-row 33.5 32

0 1 3 0 3 0 3 1

4.9 5.4 6.9 3.4 3.7 4.3 9.4 7.4

ming, H: Height, N: Number of rows, DLY: Time delay, INCL: Hole inclination, DEV:

on sequence, BI: Blasting index.
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the interaction matrix for the parameters affecting on the muck pile
fragment size is established as presented in Table 10.

Table 11 gives cause (C), effect (E), interactive intensity (CþE),
dominance (C–E) and weight of each parameter (ai) for
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line are called dominant and the points above the C¼E line are
called subordinate.
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6.2.2. Rating of parameters

The rating of the parameter’s values was carried out based
upon their effect on the muck pile fragment size. Totally six
classes of rating, from 0 to 5 were considered, where 0 denotes
the worst case (most unfavorable condition (poor fragmentation))
and 5 the best (most favorable condition (good fragmentation)) In
the case of rock fragmentation, the rating of each parameter is
presented in Table 12. The ranges of parameters in Table 12 were
proposed based on the judgments of three experienced experts in
the field of rock blasting and also the results obtained by other
researchers [37–41].
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Fig. 12. The measured and predicted X80, RES based model.

y = 3.527   x - 61.60
R2 = 0.46
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6.2.3. Risk analysis and fragmentation prediction

The data related to 30 production blasts (out of 39 blasts),
carried out at Sungun copper mine, were applied to determine the
associated VI for each blast, using Eq. (14). For all blasts, the
initiation sequence was inter-row. To make the methodology
more understandable, an example of determining VI for blast
no. 1 is shown in Table 13. Variations in the VI for the 30 blasts
are shown in Fig. 9. As it can be seen, VI varies from 35 to 58,
showing that the level of risk is in the second category (Medium–
High). Also, there is a good agreement between VI and X80 for
each blast, as shown in Fig. 10.

Variation in X80 with VI for 30 blasts (Fig. 10) suggests a good
correlation between X80 and VI. Based on the calculated VI and
measured X80 for 30 blasts, a linear regression analysis was
carried out (Fig. 11) and Eq. (15) with coefficient of determination
(R2) of 0.55 was obtained. This relation can be used as a predictive
model to predict X80 based on VI.

X80ðcmÞ ¼ 2:568ðVIÞ�58:44 ð15Þ
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Fig. 13. Comparison between the measured and predicted X80, Kuz–Ram model.
7. Evaluation of models performance

To evaluate the performance of the newly proposed model
(RES model), Kuz–Ram and statistical models, nine blasts (out of
39 blasts) carried out at Sungun copper mine were used and the
results obtained are shown in Table 14. Also for nine blasts, a
comparison was made between the predicted X80 and the mea-
sured X80 for different models as shown in Figs. 12–18.

Two indices, coefficient of determination (R2) and root mean
square error (RMSE) [Eqs. (16) and (17)] were used to carry out
the performance analysis of the models and the results obtained
Table 14
X80 predicted by various models for nine blasts, Sungun copper mine.

Blast no. VI Measured X80 (cm) Predicted X80 (cm)

RES Kuz–Ram

31 46 95 61 36

32 35 22 33 25

33 37 18 37 23

34 38 37 38 27

35 43 40 52 29

36 44 57 55 31

37 51 63 71 39

38 48 87 65 36

39 41 18 47 35
are illustrated in Table 15.

R2
¼ 100

Pn
i ¼ 1 xipred�xipred

� �
ximeas�ximeasð ÞÞ

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i ¼ 1 xipred�xipred

� �2Pn
i ¼ 1 ximeas�ximeasð Þ

2
q

0
B@

3
75

2
64 ð16Þ
Logarithmic Linear Power Polynomial Exponential

77 91 100 68 260

55 56 57 48 117

55 56 57 48 116

57 60 61 52 141

57 61 62 58 84

68 81 84 67 341

72 86 92 68 246

77 95 105 75 441

71 84 90 68 230
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Fig. 15. Comparison between the measured and predicted X80, multiple linear

regression model.
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Fig. 16. Comparison between the measured and predicted X80, power model.
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Fig. 17. Comparison between the measured and predicted X80, logarithmic model.

Table 15
The results of performance analysis of different models.

Models R2 RMSE Observations

Linear 0.58 29.73 9

Polynomial 0.54 21.58 9

Power 0.60 32.64 9

Logarithmic 0.61 23.80 9

Exponential 0.50 184.60 9

Kuz–Ram 0.46 22.22 9

RES 0.65 14.51 9
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Fig. 18. Comparison between the measured and predicted X80, exponential model.
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Fig. 14. Comparison between the measured and predicted X80, polynomial model.
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RMSE xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i ¼ 1
ximeas�xipred

� �2

r
ð17Þ
where ximeas is the ith measured element, xipred is the ith predicted
element and ‘‘n’’ is the number of datasets.

Furthermore, the predicted X80 from Kuz–Ram model, statis-
tical models and RES based model for the nine blasts compared
with the measured X80 as shown in Fig. 19. As it can be seen from
the performance indices (Table 15) and Fig. 19, the RES based
model with R2 of 0.65 and RMSE of 14.51 shows the best
agreement with measured X80 and works better in comparison
with other models. Also it can be seen that the Kuz–Ram model
with R2 of 0.46 but less RMSE shows better performance compar-
ing with some statistical models such as linear, power, logarith-
mic and exponential. On the other hand, the performance of



0
50

100
150
200
250
300
350
400
450

31 32 33 34 35 36 37 38 39

X
80

(c
m

)

Blast NO.

Measured X80 RES Kuz-Ram Logarithmic Linear Power Polynomial Exponential

Fig. 19. A comparison between the measured and predicted X80 for different models.

F. Faramarzi et al. / International Journal of Rock Mechanics & Mining Sciences 60 (2013) 82–94 93

 
 

 

exponential model, with R2 of 0.50 and RMSE of 184.60 has the
least consistency with the measured X80 and over estimates X80.
8. Conclusions

The RES based model presented in this paper, is an expert
based model, which can deal with the inherent uncertainties in
the geological systems. Also, it has the privilege of considering
unlimited input parameters, which may affect on the system.
Moreover, it has the merit of considering descriptive input
parameters; for instance, initiation sequence and blast pattern,
which are not applicable in statistical modeling.

It is concluded that the RES based model with performance
indices, R2

¼0.65 and RMSE¼14.51, performs better than linear,
polynomial, power, logarithmic, exponential and Kuz–Ram mod-
els. It is evident that the prediction model constructed in this
research is open for more development if more data are available.
Acknowledgments

The authors wish to thank the Sungun copper mine manage-
ment for their appreciable cooperation and support, during
carrying out this research work.

References

[1] Mackenzie AS. Optimum blasting. In: Proceedings of the 28th annual
Minnesota mining symposium. Duluth MN; 1967. p. 181–88.

[2] Mojtabai N, Farmer IW, Savely JP. Optimisation of rock fragmentation in
bench blasting. In: Proceedings of the 31th US symposium on rock
mechanics. Rotterdam: Balkema; 1990. p. 897–905.

[3] Aler J, Du Mouza J, Arnould M. Measurement of the fragmentation efficiency
of rock mass blasting and its mining applications. Int J Rock Mech Min Sci
Geomech Abstr 1996;33:125–39.

[4] Aler J, Du Mouza J, Arnould M. Evaluation of blast fragmentation efficiency
and its prediction by multivariate analysis procedures. Int J Rock Mech Min
Sci Geomech Abstr 1996;33:189–96.

[5] Latham JP, Munjiza A, Lu P. Components in an understanding of rock blasting.
In: Proceedings of the 6th international symposium on rock fragmentation by
blasting. Johannesburg, South Africa; 1999. p. 173–82.

[6] Jhanwar JC, Jethwa JL, Reddy AH. Influence of air-deck blasting on fragmenta-
tion in jointed rocks in an open-pit manganese mine. Eng Geol
2000;57:13–29.

[7] Sanchidrian JA, Segarra P, Lopez ML. Energy components in rock blasting. Int J
Rock Mech Min Sci 2007;44:130–47.

[8] Singh DP, Sastry VR. Influence of structural discontinuity on rock fragmenta-
tion by blasting. In: Proceedings of the 6th international symposium on
intense dynamic loading and its effects. Beijing; 1986.

[9] Ghosh A, Daemen JJK, Van Zyl D. Fractal based approach to determine the
effect of discontinuities on blast fragmentation. In: Proceedings of the 31st
USA symposium on rock mechanics. Golden, Colo; 1990. p. 905–12.
[10] Kulatilake PHSW W, Hudaverdi T, Kuzu C. Mean particle size prediction in rock
blast fragmentation using neural networks. Eng Geol 2010;114:298–311.

[11] Engin I.C. A practical method of bench blasting design for desired fragmenta-
tion based on digital image processing technique and Kuz–Ram model. In:
Proceedings of the 9th international symposium on rock fragmentation by
blasting. Granada, Spain; 2009. p. 257–63.

[12] Kuznetsov VM. The mean diameter of fragments formed by blasting rock. J
Min Sci 1973;9:144–8.

[13] Cunningham CVB. The Kuz–Ram model for prediction of fragmentation from
blasting. In: Proceedings of the 1st international symposium on rock
fragmentation by blasting. Lulea, Sweden; 1983. p. 439–53.

[14] Cunningham CVB. Fragmentation estimations and Kuz–Ram model-four
years on. In: Proceedings of the 2nd international symposium on rock
fragmentation by blasting. Keystone, Colo; 1987. p. 475–87.

[15] Hjelmberg H. Some ideas on how to improve calculations of the fragment size
distribution in bench blasting. In: Proceedings of the 1st international sympo-
sium on rock fragmentation by blasting. Lulea, Sweden; 1983. p. 469–94.

[16] Otterness RE, Stagg MS, Rholl SA, Smith NS. Correlation of shot design
parameters to fragmentation, In: Proceedings of the international society of
explosives engineers. In: Proceedings of the 7th annual conference of
explosives and blasting research. Las Vegas; 1991. p. 179–91.

[17] Kou S, Rustan A. Computerized design and result prediction of bench
blasting. In: Proceedings of the 4th international symposium on rock
fragmentation by blasting. Vienna; 1993. p. 263–71.

[18] Lownds CM. Prediction of fragmentation based on distribution of explosives
energy. In: Proceedings of the 11th annual conference of explosives and
blasting research. Orlando, Florida, USA; 1995. p. 286–96.

[19] Djordjevic N. Two-component model of blast fragmentation. In: Proceedings
of the 6th international symposium on rock fragmentation by blasting.
Johannesburg, South Africa; 1999. p. 213–19.

[20] Morin MA, Ficarazzo F. Monte Carlo simulation as a tool to predict blasting
fragmentation based on the Kuz–Ram model. Comput Geosci 2006;32:352–9.

[21] Gheibie S, Aghababaei H, Hoseinie SH, Pourrahimian Y. Kuznetsove model’s
efficiency in estimation of mean fragment size at the Sungun copper mine.
In: Proceedings of the 9th international symposium on rock fragmentation by
blasting. Granada, Spain; 2009. p. 265–69.

[22] Gheibie S, Aghababaei H, Hoseinie SH, Pourrahimian Y. Modified Kuz–Ram
fragmentation model and its use at the Sungun copper mine. Int J Rock Mech
Min Sci 2009;46:967–73.

[23] Ouchterlony F. Fragmentation characterization; the Swebrec function and its
use in blasting engineering. In: Proceedings of the 9th international sympo-
sium on rock fragmentation by blasting. Granada, Spain; 2009. p. 3–22.

[24] Saavedra JC, Katsabanis PD, Pelley CW, Kelebek S. A neural network model for
fragmentation by blasting. In: Proceedings of the 8th international sympo-
sium on rock fragmentation by blasting. Santiago, Chile; 2006. p. 200–6.

[25] Monjezi M, Rezaee M, Yazdian Varjani A. Prediction of rock fragmentation
due to blasting in Gol-E-Gohar iron mine, using fuzzy logic. Int J Rock Mech
Min Sci 2009;46:1273–80.

[26] Monjezi M, Bahrami A, Yazdian Varjani A. Simultaneous prediction of
fragmentation and flyrock in blasting operation using artificial neural net-
works. Int J Rock Mech Min Sci 2010;47:476–80.

[27] Chakraborty AK, Raina AK, Ramulu M, Choudhury PB, Haldar A, Sahu P, et al.
Parametric study to develop guidelines for blast fragmentation improvement
in jointed and massive formations. Eng Geol 2004;73:105–16.

[28] Hudaverdi T, PHSW Kulatilake, Kuzu C. Prediction of blast fragmentation
using multivariate analysis Procedures. Int J Numer Anal Meth Geomech
2011;35:1318–33.

[29] Lu P, Hudson JA. A fuzzy evaluation approach to the stability of underground
excavations. Proceedings of the ISRM symposium: EUROCK’93 1993:615–22.

[30] Cancelli A, Crosta G. Hazard and risk assessment in rockfall prone areas. In:
Skipp B, editor. Risk and reliability in ground engineering. London: Thomas
Telford; 1993. p. 177–90.



F. Faramarzi et al. / International Journal of Rock Mechanics & Mining Sciences 60 (2013) 82–9494
[31] Mazzoccola DF, Hudson JA. A comprehensive method of rock mass char-
acterization for indicating natural slope instability. Q J Eng Geol 1996;29:
37–56.

[32] Latham JP, Lu P. Development of an assessment system for the blastability of
rock masses. Int J Rock Mech Min Sci 1999;36:41–55.

[33] Benardos AG, Kaliampakos DC. A methodology for assessing geotechnical
hazards for TBM tunneling-illustrated by the Athens Metro, Greece. Int J Rock
Mech Min Sci 2004;41:987–99.

[34] Shin HS, Kwon YC, Jung YS, Bae GJ, Kim YG. Methodology for quantitative
hazard assessment for tunnel collapses based on case histories in Korea. Int J
Rock Mech Min Sci 2009;46:1072–87.

[35] SRK Consulting Engineers and Scientists. Sungun copper project, mining geotech-
nics and slope design studies. Final report. Sungun copper company; 2008.

[36] Lilly PA. An empirical method of assessing rock mass blastability. In:
Proceedings of the large open-pit conference, IMM. Australia; 1986. p. 89–92.

 
 

 

[37] Langefors U, Kihlstrom B. The modern technique of rock blasting. New York:
Wiley; 1978.

[38] Konya CJ, Walter EJ. Rock blasting and overbreak control. FHWA Report-
FHWA-HI-92-101; 1991.

[39] Jimeno CL, Jimeno EL, Carcedo FJA. Drilling and blasting of rocks. Rotterdam:
Balkema; 1995.

[40] Bhandari S. Engineering rock blasting operations. Rotterdam: Balkema; 1997.
[41] Hustrulid W. Blasting principles for open-pit mining. Rotterdam: Balkema; 1999.
[42] Montgomery DC, Peck EA. Introduction to linear regression analysis. New

York: Wiley; 1992.
[43] Hudson JA. Rock engineering systems: theory and practice. Chichester: Ellis

Horwood; 1992.
[44] Lu P, Latham JP. A continuous quantitative coding approach to the interaction

matrix in rock engineering systems based on grey systems approaches. In:
Proceedings of the 7th international congress of IAEG. 1994; p. 4761–70.


	A rock engineering systems based model to predict rock fragmentation by blasting
	Introduction
	The field study
	Site description
	Rock mass properties
	Data collection

	Muck pile fragment size prediction, using Kuz-Ram model
	Statistical modeling
	Multiple linear regression analysis
	Multiple non-linear regression analysis

	Rock engineering systems
	An RES based model to predict rock fragmentation
	Effective parameters in the RES based model
	Interaction matrix and rating of parameters
	Interaction matrix
	Rating of parameters
	Risk analysis and fragmentation prediction


	Evaluation of models performance
	Conclusions
	Acknowledgments
	References




